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Abstract

Linear stability theory is applied to the problem of the onset of buoyancy driven instability in a horizontal layer of
electrically conducting ~uid heated from below in the presence of a vertical magnetic _eld[ Under the proper boundary
conditions on the magnetic _eld perturbations\ the Chebyshev collocation method is adopted to obtain the eigenvalue
equation\ which is then solved numerically[ The critical Rayleigh number Rc\ the critical wavenumber ac and the critical
frequency vc are obtained for wide ranges of the Prandtl number Pr\ the magnetic Prandtl number Pm and the
Chandrasekhar number Q[ A necessary and su.cient condition for overstability to occur is also obtained[ Þ 0887
Elsevier Science Ltd[ All rights reserved[

Nomenclature

a �"a1
x¦a1

y #0:1\ wavenumber
an\ bn\ cn expansion coe.cients de_ned by equations
"42#Ð"44#
b dimensionless magnetic induction in the z!direction\
see equation "14#
b½ dimensionless magnetic induction in the z!direction
in the outer regions\ see equation "14#
B �"Bx\ By\ Bz#\ magnetic induction
B	 �"B	x\ B	y\ B	z#\ magnetic induction in the outer regions
B9 external magnetic induction in the z!direction
c speci_c heat
C0\ C1 arbitrary constants
d depth of the ~uid layer
D �d:dz
E matrix de_ned by equation "59#
F matrix de_ned by equation "59#
g �"9\ 9\ −`#\ gravitational acceleration
k thermal conductivity
N number of terms in the expansions "42#Ð"44#
p pressure
p9 pressure at z � 9

� Corresponding author

Pm �n:nm\ magnetic Prandtl number
Pr �n:k\ Prandtl number
Q �B1

9d
1s:r9n\ Chandrasekhar number

Q� value of Q at the point of transition from stationary
to oscillatory mode
R �ab`d3:nk\ Rayleigh number
t time
t� dimensionless time\ see equation "14#
T temperature
T9 temperature at the lower boundary
T0 temperature at the upper boundary
Tn"j# Chebyshev polynomial
v dimensionless velocity in the z!direction\ see equation
"14#
v �"vx\ vy\ vz#\ velocity
x\ y\ z Cartesian coordinates
x�\ y�\ z� dimensionless Cartesian coordinates\ see
equation "14#
X vector de_ned by equation "50#[

Greek symbols
a coe.cient of volume expansion
b �"T9−T0#:d\ adverse temperature gradient
o �m½ :m\ ratio of magnetic permeabilities
h dynamic viscosity
u dimensionless temperature\ see equation "14#
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k �k:r9c\ thermometric conductivity
l "complex# time constant
m magnetic permeability
m½ magnetic permeability in the outer regions
n �h:r9\ kinematic viscosity
nm �0:sm\ magnetic viscosity
j variable de_ned by equation "35#
jm collocation points de_ned by equation "48#
r density
r9 density at T � T9

s electrical conductivity
F\ U\ C\ C	 de_ned by equation "22#
Fn\ Un\ Cn trial functions de_ned by equations "42#Ð
"44#[
v frequency "imaginary part of l#[

Subscript
c critical[

Superscripts
n neutral
O oscillatory
S stationary
* "overbar# steady solutions
? "prime# perturbed quantities
g "hat# de_ned by equation "36#[

0[ Introduction

The e}ect of a vertical magnetic _eld on buoyancy
driven instability in a horizontal layer of electrically con!
ducting\ viscous ~uid heated from below was _rst ana!
lyzed by Chandrasekhar ð0Ł[ He obtained the critical Ray!
leigh number and the critical wavenumber for the onset
of stationary convection as functions of Q "the square of
the Hartmann number# in the following three cases "0#
both bounding surfaces free\ "1# one bounding surface
free and the other rigid and "2# both bounding surfaces
rigid[ For the onset of overstability\ however\ his analysis
was limited to the case when both bounding surfaces
are free and\ moreover\ his boundary conditions on the
magnetic _eld perturbations were not correct[ Under
these circumstances\ he concluded that if Pr × Pm\ the
principle of the exchange of stabilities is valid "i[e[\ the
instability sets in as stationary convection# and\ there!
fore\ a necessary condition for overstability to be possible
is Pr ³ Pm\ where Pr is the Prandtl number and Pm is the
magnetic Prandtl number[

The analysis by Chandrasekhar has subsequently been
re!examined by several workers[ Using the correct bound!
ary conditions on the magnetic _eld perturbations\ Gib!
son ð1Ł showed that overstability is the preferred state for
su.ciently large Q if Pr ³ Pm[ Sherman and Ostrach ð2Ł
showed that a su.cient condition which will establish
the exchange principle is Pr × Pm when Q is very large[

Gupta et al[ ð3Ł and Banerjee et al[ ð4Ł demonstrated that
if QPm ¾ p1\ the principle of the exchange of stabilities is
valid[ Kumar et al[ ð5Ł showed that in the limit Q Ł 0 and
Pm ð 0\ overstability is indeed possible and\ therefore\
the Chandrasekhar|s criterion Pr ³ Pm is not a necessary
condition for overstability[

As stated above\ the condition for overstability to
occur has not yet been established[ Moreover\ to the best
of our knowledge\ the critical Rayleigh number Rc\ the
critical wavenumber ac and the critical frequency vc for
the onset of overstability under the proper boundary
conditions have not been obtained so far[ These provide
us with the motivation for the present study[ The main
purpose of the study reported here is\ therefore\ to obtain
the essentially exact values of Rc\ ac and vc for the onset
of overstability and\ at the same time\ to get numerically
a necessary and su.cient condition for overstability to
occur[

1[ Formulation of the problem

We consider an in_nite horizontal layer of electrically
conducting\ viscous ~uid upon which is impressed a uni!
form vertical magnetic induction B9[ The lower bounding
surface at z � 9 and the upper bounding surface at z � d
are both rigid and are maintained at constant tem!
peratures T9 and T0\ respectively[

The equations governing ~uid motion are given by

div v � 9 "0#

r 0
1v

1t
¦"v grad#v1� rg−grad p¦h91v

¦
0
m

rot B×B "1#

rc 0
1T
1t

¦"v grad#T1� k91T "2#

r � r9"0−a"T−T9## "3#

1B

1t
� rot"v×B#¦

0
sm

91B "4#

div B � 9 "5#

where v �"vx\ vy\ vz# is the velocity\ g �"9\ 9\ −`# is the
gravitational acceleration\ B �"Bx\ By\ Bz# is the magnetic
induction\ r is the density\ p is the pressure\ T is the
temperature\ h is the dynamic viscosity\ m is the magnetic
permeability\ c is the speci_c heat\ k is the thermal con!
ductivity\ a is the coe.cient of volume expansion and s

is the electrical conductivity[
If the outer regions adjacent to the ~uid layer are

electrically non!conducting\ the equations governing the
magnetic induction in the regions "−� ³ z ¾ 9 and
d ¾ z ³ �# are

91B	 � 9 "6#
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div B	 � 9 "7#

where B	 �"B	x\ B	y\ B	z# is the magnetic induction in the
outer regions[ The boundary conditions on the magnetic
induction are given by

0
m

Bx �
0
m½

B	x at z � 9\ d "8#

0
m

By �
0
m½

B	y at z � 9\ d "09#

Bz � B	z at z � 9\ d "00#

where m½ is the magnetic permeability in the outer regions[
It is clear that there exist the following steady solutions

"denoted by an overbar#[

v¹ �"9\ 9\ 9# "01#

TÞ� T9−bz "02#

r¹ � r9"0¦abz# "03#

p¹ � p9−r9"z¦0
1
abz1#` "04#

BÞ �"9\ 9\B9# "05#

B	BÞ �"9\ 9\B9# "06#

where b �"T9−T0#:d is the adverse temperature gradient
and p9 is the pressure at z � 9[

Let this initial steady state be slightly perturbed[ Fol!
lowing the usual steps of linear stability theory\ we obtain

0
1

1t
−n91191v?z � a`91

H T?¦
B9

r9m

1

1z
91B?z# "07#

0
1

1t
−k911T? � bv?z "08#

0
1

1t
−nm911B?z � B9

1v?z
1z

"19#

91B	?z � 9 "10#

v?z �
1v?z
1z

� T? � 9 at z � 9\ d "11#

B?z � B	?z at z � 9\ d "12#

0
m

1B?z
1z

�
0
m½

1B	?z
1z

at z � 9\ d "13#

where n � h:r9 is the kinematic viscosity\ k � k:r9c is
the thermometric conductivity\ nm � 0:sm is the magnetic
viscosity\ 91

H � 11:1x1¦11:1y1 is the horizontal La!
placian and prime refers to perturbed quantities[ Here
the boundary conditions "13# have been obtained from
equations "5# and "7# and the boundary conditions "8#
and "09#[

If we now introduce the following dimensionless vari!
ables]

"x�\ y�\ z�# �"x:d\ y:d\ z:d#\ t� � tn:d1\ v � v?zd:k

u � T?:bd\ b � B?znm:kB9\ b½ � B	?znm:kB9 "14#

equations "07#Ð"10# become\ respectively\

0
1

1t
−91191v � R91

Hu¦Q
1

1z
"91b# "15#

0Pr

1

1t
−911 u � v "16#

0Pm

1

1t
−911 b �

1v
1z

"17#

91b½ � 9 "18#

where R � ab`d3:nk is the Rayleigh number\
Q � B1

9d
1s:r9n is the Chandrasekhar number "the

square of the Hartmann number#\ Pr � n:k is the Prandtl
number and Pm � n:nm � smn is the magnetic Prandtl
number[ Here the asterisks on x\ y\ z and t have been
omitted[ Similarly\ the boundary conditions "11#Ð"13#
become\ respectively\

v �
1v
1z

� u � 9 at z � 9\ 0 "29#

b � b½ at z � 9\ 0 "20#

o
1b
1z

�
1b½

1z
at z � 9\ 0 "21#

where o � m½ :m[
If we next let

ðv\ u\ b\ b½Ł � ðF"z#\ U"z#\ C"z#\ C	"z#Ł

×exp ðlt¦i"axx¦ayy#Ł "22#

equations "15#Ð"18# become\ respectively\

ðl−"D1−a1#Ł"D1−a1#F

� −Ra1U¦QD"D1−a1#C "23#

ðPrl−"D1−a1#ŁU � F "24#

ðPml−"D1−a1#ŁC � DF "25#

"D1−a1#C	 � 9 "26#

where l is the "complex# time constant\ a �"a1
x¦a1

y #0:1 is
the "real# wavenumber and D � d:dz[ Similarly\ the
boundary conditions "29#Ð"21# become\ respectively\

F � DF � U � 9 at z � 9\ 0 "27#

C � C	 at z � 9\ 0 "28#

oDC � DC	 at z � 9\ 0[ "39#

The general solution of equation "26# is given by

C	 � C0 eaz¦C1 e−az[ "30#

Since C	 must be _nite at z � 2�\ we have

C � C1 e−az for 0 ¾ z ³ � "31#

C	 � C0 eaz for −� ³ z ¾ 9[ "32#

Inserting "31# and "32# into "28# and "39#\ and eliminating
C0 and C1\ we obtain the following boundary conditions
on C]

DC¦aC � 9 at z � 0 "33#
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DC−aC � 9 at z � 9 "34#

where we have set o � m½ :m � 0\ since the outer regions
adjacent to the ~uid layer "−� ³ z ¾ 9 and 0 ¾ z ³ �#
are assumed not to be ferromagnetic[

2[ Numerical method

In order to apply the Chebyshev collocation method
"see\ for example\ Mizushima and Saito ð6Ł#\ we _rst
introduce the new independent variable j de_ned by

j � 1z−0 "35#

and\ furthermore\ let

a � 1a¼\ v � 3v¼ \ R � 05R
\ Q � 3Q
\ F � 1F

U � 0

1
U
\ C � C
 and D � 1D
 � 1d:dj[ "36#

Then\ the boundary conditions "27#\ "33# and "34#
become

F � DF � U � DC2aC � 9 at j � 20 "37#

while equations "23#Ð"25# remain unchanged[ Here the
symbol {g| has been omitted[

We next expand F\ U and C as

F � s
N

n�0

anFn"j# "38#

U � s
N

n�0

bnUn"j# "49#

C � s
N

n�0

cnCn"j# "40#

where

Fn"j# �"0−j1#1Tn−0"j# "41#

Un"j# �"0−j1#Tn−0"j# "42#

Cn"j# � 00¦
1

"n−0#1¦a
−j11Tn−0"j#[ "43#

Here Tn"j# is the Chebyshev polynomial of the nth order[
It should be noted here that Fn"j#\ Un"j# and Cn"j# satisfy
the boundary conditions "37# automatically[

Substituting "38#Ð"40# into equations "23#Ð"25# and
requiring that equations "23#Ð"25# be satis_ed at N col!
location points j0\ j1\ [ [ [ \ jN de_ned by

jm � cos 0
m

N¦0
p1 "m � 0\ 1\ [ [ [ \ N# "44#

we obtain 2N algebraic equations for 2N unknowns a0\
a1\ [ [ [ \ aN\ b0\ b1\ [ [ [ \ bN\ c0\ c1\ [ [ [ [ \ cN of the form

EX � lFX "45#

where

XT �"a0\ a1\ [ [ [ \ aN\ b0\ b1\ [ [ [ \ bN\ c0\ c1\ [ [ [ \ cN# "46#

is the transpose of the column vector X[ The coe.cient

matrices E and F are of dimension 2N×2N and their
explicit expressions are omitted[

For _xed values of Pr\ Pm\ Q\ a and R\ the values of l

which ensure a non!trivial solution of equation "45# can
be obtained as the eigenvalues of the matrix F−0E[ From
2N eigenvalues l"0#\ l"1#\ [ [ [ \ l"2N#\ the one having the
largest real part "l"k#\ say#\ is selected[ In order to obtain
the neutral stability curve\ the value of R for which the
real part of l"k# vanishes must be sought[ Let this value
of R be denoted by Rn[ The lowest point of Rn as a
function of a gives the critical Rayleigh number Rc and
the critical wavenumber ac[ The imaginary part of l"k#
corresponding to Rc and ac gives the critical frequency vc[
If vc � 9\ the critical disturbance modes are stationary\
whereas if vc � 9\ they are oscillatory[ It is clear that the
stationary mode always exists[ Therefore\ Rc � RS

c when
the oscillatory mode does not exist\ whereas
Rc � min"RS

c \ RO
c # when the oscillatory mode exists\

where RS
c and RO

c are the critical Rayleigh number for
the stationary and the oscillatory modes\ respectively[
This procedure was repeated for various values of Pr\ Pm

and Q[
The convergence of the Chebyshev collocation method

was tested by examining the variation of Rc\ ac and vc

with N\ the number of terms retained in the expansions
"38#Ð"40#[ Selected results are displayed in Table 0 for
several combinations of the governing parameters[ The
convergence was faster in the stationary mode than in
the oscillatory mode[ All of the values in this table were
obtained using double!precision arithmetic and con!
_rmed using quadruple!precision arithmetic[ Therefore\
all of the _gures in this table are considered to be sig!
ni_cant[

3[ Numerical results

The critical Rayleigh number Rc is shown in Fig[ 0 as
a function of the Chandrasekhar number Q for various
values of the Prandtl number Pr and the magnetic Prandtl
number Pm[ The dashed and solid curves represent RS

c

and RO
c for the stationary and the oscillatory modes\

respectively[
The values of RS

c \ which is independent of Pr and Pm\
is also tabulated in Table 1 as a function of Q[ As in
Table 0\ all of the _gures in this table are considered to
be signi_cant[ The value of N in this table indicates the
number of terms in the expansions "38#Ð"40# required
for RS

c to converge[ We see from Tables 0 and 1 that the
convergence of the Chebyshev collocation method
becomes slower as Q increases[ Numerical values of Table
1 are much more accurate than those in Table 1 of the
paper by Chandrasekhar ð0Ł[

It is seen from Fig[ 0 that if Q is less than a certain
value\ Q�\ which depends upon Pr and Pm\ instability sets
in a stationary mode and Rc � RS

c [ However\ if Q exceeds
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Table 0
Selected results of convergence tests of the Chebyshev collocation method

N RS
c aS

c vc N RO
c aO

c vc

Q � 091 Pr � 09−1\ Pm � 0\ Q � 091

3 2608[767 3[9938 9 5 2016[343 1[7734 15[469
5 2643[544 3[9010 9 7 2025[200 1[7754 15[340
7 2646[008 3[9010 9 09 2025[714 1[7755 15[331

09 2646[116 3[9019 9 01 2025[732 1[7755 15[330
01 2646[129 3[9019 9 03 2025[733 1[7755 15[330
03 2646[129 3[9019 9 05 2025[733 1[7755 15[330

Q � 093 P � 09−1\ Pm � 0\ Q � 093

09 013 209[7 7[5516 9 19 5251[062 2[8485 263[84
04 013 329[1 7[5534 9 14 5724[080 2[8532 263[83
19 013 490[3 7[5542 9 29 5276[292 2[8536 263[83
14 013 496[2 7[5543 9 24 5276[394 2[8536 263[83
29 013 496[5 7[5543 9 39 5276[309 2[8536 263[83
24 013 496[5 7[5543 9 34 5276[309 2[8536 263[83

Q � 095 Pr � 09−1\ Pm � 0\ Q � 095

49 09 219 758 07[884 9 89 27 630[37 6[3841 2371[9
59 09 210 213 07[884 9 099 27 632[43 6[3842 2371[9
69 09 210 320 07[884 9 009 27 632[71 6[3842 2371[9
79 09 210 338 07[884 9 019 27 632[74 6[3842 2371[9
89 09 210 341 07[884 9 029 27 632[75 6[3842 2371[9

099 09 210 341 07[884 9 039 27 632[75 6[3842 2371[9

Q�\ instability sets in as oscillatory mode\ and Rc � RO
c [

To avoid confusion\ the segments of the curves for RO
c

which extend above the points of intersection with the
dashed curve for RS

c are not shown[
The magnitude "Q�# of Q at the point of transition

from stationary to oscillatory mode is plotted in Fig[ 1
as a function of Pm for various values of Pr[ The curve
markers indicate the computed points[ Each curve in
Fig[ 1 de_nes the boundary between the stationary and
oscillatory domains[ Points below each curve represent
parameter combinations "Q\ Pm# for which Rc � RS

c \
while points above each curve are those for which
Rc � RO

c [ Therefore\ Fig[ 1 gives a necessary and
su.cient condition for stationary convection or over!
stability to occur[ Comparing the criteria obtained by
several investigators cited in Section 0 with our results
given by Fig[ 1\ we see that the criteria obtained by
Gibson ð1Ł and Sherman and Ostrach ð2Ł are correct
only when Q is su.ciently large\ and those obtained by
Chandrasekhar ð0Ł\ Gupta et al[ ð3Ł and Banerjee et al[
ð4Ł are only su.cient conditions for stationary convection
to occur\ whereas the criterion obtained by Kumar et al[
ð5Ł is incorrect[

The process of transition from the stationary to oscil!
latory mode is illustrated in Fig[ 2 for Pr � 9[90 and

Pm � 0[ In this _gure\ the neutral curves for the stationary
and oscillatory modes are shown for values of Q near the
transition value Q�[ At Q � 53\ the lowest point of the
stationary "dashed# curve is lower than that of the oscil!
latory "solid# curve and\ therefore\ Rc � RS

c [ However\ if
Q is increased to 54\ the lowest point of the stationary
curve becomes higher than that of the oscillatory curve[
Thus\ at Q � 54\ Rc � RO

c [ As Q is further increased\ the
stationary curve extends upward more rapidly than the
oscillatory curve[

Returning to the discussion of Fig[ 0\ it can be seen
that RS

c increases rapidly with increasing Q\ and that after
transition to oscillatory mode\ RO

c increases less rapidly
with increasing Q except for the case when Pm is
su.ciently large[ This means that\ in general\ the mag!
netic _eld has an inhibiting e}ect on the onset of insta!
bility both for the stationary and the oscillatory modes[
It is also seen from Fig[ 0 that RO

c decreases with increas!
ing Pm and increases with increasing Pr[

The critical wavenumber ac is shown in Fig[ 3 as a
function of Q for various values of Pr and Pm[ The dashed
and solid curves represent aS

c and aO
c for the stationary

and the oscillatory modes\ respectively[ The values of aS
c \

which is independent of Pr and Pm\ is also tabulated in
Table 1 as a function of Q[ The vertical lines in Fig[
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Fig[ 0[ Variation of the critical Rayleigh number Rc with the Chandrasekhar number Q for various values of the Prandtl number Pr

and the magnetic Prandtl number Pm[ ! ! !\ stationary modes^ *\ oscillatory modes[
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Fig[ 0 "continued#
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Fig[ 0 "continued#
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Fig[ 1[ The magnitude "Q�# of the Chandrasekhar number Q at the point of transition from stationary to oscillatory mode as a function
of the magnetic Prandtl number Pm for various values of the Prandtl number Pr[
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Fig[ 2[ Neutral stability curves for various values of Q near the point of transition from stationary to oscillatory mode when Pr � 9[90
and Pm � 0[ ! ! !\ stationary modes^ *\ oscillatory modes[
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Fig[ 3[ Variation of the critical wavenumber ac with the Chandrasekhar number Q for various values of the Prandtl number Pr and the
magnetic Prandtl number Pm[ ! ! !\ stationary modes^ *\ oscillatory modes[
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Fig[ 3 "continued#
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Fig[ 3 "continued#
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Fig[ 4[ Variation of the critical frequency vc with the Chandrasekhar number Q for various values of the Prandtl number Pr and the
magnetic Prandtl number Pm[
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Fig[ 4 "continued#
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Fig[ 4 "continued#
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Fig[ 5[ Side views of streamlines at the onset of instability for the case Q � 0999[ "a# Stationary mode\ "b# oscillatory mode "t � 9#\ "c#
oscillatory mode "t � 0

3
T#[

Fig[ 6[ Side views of isotherms at the onset of instability for the case Q � 0999[ "a# Stationary mode\ "b# oscillatory mode "t � 9#\ "c#
oscillatory mode "t � 0

3
T#[

Fig[ 7[ Side views of magnetic lines of force at the onset of instability for the case Q � 0999[ "a# Stationary mode\ "b# oscillatory mode
"t � 9#\ "c# oscillatory mode "t � 0

3
T#[
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Table 1
Variation of the critical Rayleigh number RS

c and the critical
wavenumber aS

c for the onset of stationary convection with the
Chandrasekhar number Q

Q RS
c aS

c N

9 0696[651 2[0052 09
0 0621[109 2[0215 09
1 0645[499 2[0374 09
4 0717[368 2[0833 09

09 0834[635 2[1542 09
19 1060[675 2[2892 09
49 1791[995 2[5681 04

099 2646[129 3[9019 04
199 4377[422 3[3347 04
499 09 098[655 4[0537 19

0999 06 091[73 4[7039 19
1999 29 013[65 5[4441 14
4999 55 507[67 6[5743 29

09 999 013 496[5 7[5543 29
19 999 125 284[4 8[6543 24
49 999 450 560[3 00[3160 49

099 999 0 980 796[8 01[7507 59
199 999 1 024 845 03[369 59
499 999 4 113 583 05[787 69

0 999 999 09 210 341 07[884 89

N is the number of terms in the expansions "38#Ð"40# for RS
c and

aS
c to converge[

3 represent the discontinuous changes in ac due to the
transition from stationary to oscillatory mode[ We see
from Fig[ 3 that both aS

c and aO
c are increasing functions

of Q\ while the dependence of aO
c on Pr and Pm is

complicated[
Additional information regarding the nature of the

oscillatory instability can be obtained from Fig[ 4\ which
shows the variation of the critical frequency vc with Q
for various values of Pr and Pm[ The vertical lines rep!
resent the discontinuous changes in vc due to the tran!
sition from stationary "vc � 9# to oscillatory "vc � 9#
mode[ We see from Fig[ 4 that vc is an increasing function
of Q\ Pr and Pm[

It is _nally concluded from Figs 0 and 1 that under
most terrestrial conditions "Pr × Pm#\ instability sets in
as stationary convection[ In fact\ experiments by Nak!
agawa ð7\ 8Ł for a horizontal layer of mercury show no
evidence of overstability[ Under astrophysical conditions

"Pr ð Pm#\ however\ overstability will be possible[ It is
also concluded from Figs 0 and 3 that as Pm becomes
su.ciently large\ RO

c and aO
c become nearly independent

of Q\ as far as Q ¾ 095[ This means that under astro!
physical conditions "Pr ð Pm#\ the magnetic _eld has
almost no e}ect on buoyancy driven instability except
for its frequency[

In closing this section\ side views of streamlines\ iso!
therms and magnetic lines of force at the onset of insta!
bility are shown in Figs 5\ 6 and 7\ respectively\ for
the case Q � 0999[ The other parameter values taken in
oscillatory modes are Pr � 0 and Pm � 09[ The region
shown is 9 ¾ x ¾ 1p:ac and 9 ¾ z ¾ 0[ In the captions of
these _gures\ T denotes the period of oscillation[ We see
from Figs 5\ 6 and 7 that when disturbances are station!
ary\ streamlines\ isotherms and magnetic lines of force
are symmetric with respect to a vertical centre plane of a
cell\ whereas when disturbances are oscillatory\ they are
not symmetric[
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