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Abstract

Linear stability theory is applied to the problem of the onset of buoyancy driven instability in a horizontal layer of
electrically conducting fluid heated from below in the presence of a vertical magnetic field. Under the proper boundary
conditions on the magnetic field perturbations, the Chebyshev collocation method is adopted to obtain the eigenvalue
equation, which is then solved numerically. The critical Rayleigh number R, the critical wavenumber «, and the critical
frequency w,. are obtained for wide ranges of the Prandtl number P, the magnetic Prandtl number P, and the
Chandrasekhar number Q. A necessary and sufficient condition for overstability to occur is also obtained. © 1998

Elsevier Science Ltd. All rights reserved.

Nomenclature
a =(ai+a})'?, wavenumber
a,, b,, ¢, expansion coefficients defined by equations
(53)-(55)
b dimensionless magnetic induction in the z-direction,
see equation (25)
b dimensionless magnetic induction in the z-direction
in the outer regions, see equation (25)
B =(B, B,, B.), magnetic induction
B =(B. B, B.), magneticinduction in the outer regions
B, external magnetic induction in the z-direction
¢ specific heat
C,, C, arbitrary constants
depth of the fluid layer

=d/dz

matrix defined by equation (60)

matrix defined by equation (60)

=(0,0, —g), gravitational acceleration
thermal conductivity

number of terms in the expansions (53)—(55)
pressure
po pressure atz =0

S e HED S

* Corresponding author

P, =v/v,, magnetic Prandtl number

P.  =v/k, Prandtl number

QO =Bj}d*d/pyv, Chandrasekhar number

Q* value of Q at the point of transition from stationary
to oscillatory mode

R =uafgd*/vk, Rayleigh number

t time

t* dimensionless time, see equation (25)

T temperature

T, temperature at the lower boundary

T, temperature at the upper boundary

T,(¢) Chebyshev polynomial

v dimensionless velocity in the z-direction, see equation
(25)

v =(v,,,v.), velocity

x, y,z Cartesian coordinates

x*, y* z*¥ dimensionless Cartesian coordinates, see
equation (25)

X vector defined by equation (61).

Greek symbols

o coefficient of volume expansion

p =(T,—T))/d, adverse temperature gradient
& =[i/u, ratio of magnetic permeabilities

n dynamic viscosity

0 dimensionless temperature, see equation (25)
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K =k/pyc, thermometric conductivity
A (complex) time constant

4 magnetic permeability

[i  magnetic permeability in the outer regions

v =n/p,, kinematic viscosity

vm = 1/ou, magnetic viscosity

¢ variable defined by equation (46)

¢ collocation points defined by equation (59)

p density

po density at T =T,

o electrical conductivity

®,0, ¥, ¥ defined by equation (33)

®,, ©,, ¥, trial functions defined by equations (53)—
(55).

w frequency (imaginary part of 4).

Subscript
¢ critical.

Superscripts

n neutral

O oscillatory

S stationary

(overbar) steady solutions
(prime) perturbed quantities

" (hat) defined by equation (47).

’

1. Introduction

The effect of a vertical magnetic field on buoyancy
driven instability in a horizontal layer of electrically con-
ducting, viscous fluid heated from below was first ana-
lyzed by Chandrasekhar [1]. He obtained the critical Ray-
leigh number and the critical wavenumber for the onset
of stationary convection as functions of Q (the square of
the Hartmann number) in the following three cases (1)
both bounding surfaces free, (2) one bounding surface
free and the other rigid and (3) both bounding surfaces
rigid. For the onset of overstability, however, his analysis
was limited to the case when both bounding surfaces
are free and, moreover, his boundary conditions on the
magnetic field perturbations were not correct. Under
these circumstances, he concluded that if P, > P,,, the
principle of the exchange of stabilities is valid (i.e., the
instability sets in as stationary convection) and, there-
fore, a necessary condition for overstability to be possible
is P, < P, where P, is the Prandtl number and P,, is the
magnetic Prandtl number.

The analysis by Chandrasekhar has subsequently been
re-examined by several workers. Using the correct bound-
ary conditions on the magnetic field perturbations, Gib-
son [2] showed that overstability is the preferred state for
sufficiently large Q if P, < P,,. Sherman and Ostrach [3]
showed that a sufficient condition which will establish
the exchange principle is P, > P, when Q is very large.

Gupta et al. [4] and Banerjee et al. [5] demonstrated that
if QP,, < n?, the principle of the exchange of stabilities is
valid. Kumar et al. [6] showed that in the limit Q > 1 and
P, « 1, overstability is indeed possible and, therefore,
the Chandrasekhar’s criterion P, < P, is not a necessary
condition for overstability.

As stated above, the condition for overstability to
occur has not yet been established. Moreover, to the best
of our knowledge, the critical Rayleigh number R, the
critical wavenumber «, and the critical frequency w, for
the onset of overstability under the proper boundary
conditions have not been obtained so far. These provide
us with the motivation for the present study. The main
purpose of the study reported here is, therefore, to obtain
the essentially exact values of R, a. and w, for the onset
of overstability and, at the same time, to get numerically
a necessary and sufficient condition for overstability to
occur.

2. Formulation of the problem

We consider an infinite horizontal layer of electrically
conducting, viscous fluid upon which is impressed a uni-
form vertical magnetic induction B,. The lower bounding
surface at z = 0 and the upper bounding surface at z = d
are both rigid and are maintained at constant tem-
peratures T, and 77, respectively.

The equations governing fluid motion are given by

divv=0 (1

0
p <% +(v grad)v) = pg—gradp+yV3v

1
+ﬁrotB><B 2)

oT
oc (E—i—(v grad)T> =kV2T (3)
p=po{l—a(T—To)} 4
—B— t B iVzB 5
at—rO(VX wa Q)
divB=0 (6)

where v = (v,,v,,0.) is the velocity, g =(0,0, —g) is the
gravitational acceleration, B = (B,, B, B.) is the magnetic
induction, p is the density, p is the pressure, T is the
temperature, 7 is the dynamic viscosity, u is the magnetic
permeability, c¢ is the specific heat, k is the thermal con-
ductivity, « is the coefficient of volume expansion and ¢
is the electrical conductivity.

If the outer regions adjacent to the fluid layer are
electrically non-conducting, the equations governing the
magnetic induction in the regions (—oo <z <0 and
d<z< o) are

V'B=0 (M
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divB=0 3)

where B =(B,, B,, B.) is the magnetic induction in the

outer regions. The boundary conditions on the magnetic
induction are given by

1 1.
~B. =—B, atz=0,d )
J a
1 1.
~B,=—B atz=0,d (10)
woofg
B.=B atz=0,d (11)

where [i is the magnetic permeability in the outer regions.
It is clear that there exist the following steady solutions
(denoted by an overbar).

¥ =(0,0,0) (12)
['=T,— Bz (13)
p=po(1+apz) (14)
P =po—po(z+354B2")g (15)
B =(0,0, B,) (16)
B =(0,0,B,) (17)

where § = (T,— T,)/d is the adverse temperature gradient
and p, is the pressure at z = 0.

Let this initial steady state be slightly perturbed. Fol-
lowing the usual steps of linear stability theory, we obtain

0 B, @
— =W |V, = agVi T + —~—V*B) (18)
ot Polt 0z
O w1 = o (19)
a =P
0 N o o’
(E —vnV )BZ =By (20)
V2B, =0 (21
gy
=T =0 atz=0,d (22)
oz
B.=B atz=0,d (23)
10B. 108,
——S=——" atz=0,d (24)
u oz oz

where v = 5/p, is the kinematic viscosity, k = k/p,c is
the thermometric conductivity, v,, = 1/ou is the magnetic
viscosity, Vi = 0°/0x*+0?/0y* is the horizontal La-
placian and prime refers to perturbed quantities. Here
the boundary conditions (24) have been obtained from
equations (6) and (8) and the boundary conditions (9)
and (10).

If we now introduce the following dimensionless vari-
ables:

(%, %, 2%) = (x/d, y/d, z|d), 1* = tv[d®, v=v.d[x
0=T/pd, b= By,/kBy, b= Bv,/xB, (25)

equations (18)—(21) become, respectively,

i 2 2., 2 i 2
(az -V >V v=RVi0+0 - (V?b) (26)
Pl vlo—o 27)
"ot =t
0 ) v
(Pma—v >b_§ (28)
V=0 (29)

where R = afgd*/vk is the Rayleigh number,
QO = B}d*c/p,v is the Chandrasekhar number (the
square of the Hartmann number), P, = v/k is the Prandtl
number and P, = v/v, = ouv is the magnetic Prandtl
number. Here the asterisks on x, y, z and ¢ have been
omitted. Similarly, the boundary conditions (22)—(24)
become, respectively,

ov

v=—=0=0 atz=0,1 (30)
0z

b=bh atz=0,1 31)

ob  ob

8&:(’}72 dtZ=0,1 (32)

where ¢ = [i/p.

If we next let
[0,0,b,b] = [D(z), O(2), ¥(z), P(2)]
xexp [At+i(a.x+a,y)]  (33)
equations (26)—(29) become, respectively,
[hi—(D?—a)|(D? —a*)D
= —Ra’O+0D(D*—a*)¥ (34)

[P)—(D*—ad*)]® =@ (35)
[Poi—(D*—a*)]¥ = DD (36)
D>—aH¥ =0 (37)

where 4 is the (complex) time constant, @ = (a; +a;)" is
the (real) wavenumber and D = d/dz. Similarly, the
boundary conditions (30)—(32) become, respectively,

O=DO=0O=0 atz=0,1 (38)
¥=9 atz=0,1 (39)
eDY =DP atz=0,1. (40)
The general solution of equation (37) is given by

P=Ce“+Ce . 41)
Since ¥ must be finite at z = + oo, we have

Y=Ce*” forl<z< (42)
P =C e for—o0<z<0. (43)

Inserting (42) and (43) into (39) and (40), and eliminating
C, and C,, we obtain the following boundary conditions
on V¥:

DY +a¥ =0 atz=1 (44)
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D¥Y—a¥ =0 atz=0 (45)

where we have set ¢ = i/u = 1, since the outer regions
adjacent to the fluid layer (—o0o <z<0and I < z < )
are assumed not to be ferromagnetic.

3. Numerical method

In order to apply the Chebyshev collocation method
(see, for example, Mizushima and Saito [7]), we first
introduce the new independent variable ¢ defined by

E=2z—1 (46)
and, furthermore, let

a=24, w=4®, R=16R, Q0=40, ®=20
©=106, ¥Y=9 and D=2D =2d/d¢. 47)
Then, the boundary conditions (38), (44) and (45)
become

OP=DO=0=D¥+a¥ =0 até=+1 (48)

while equations (34)—(36) remain unchanged. Here the
symbol ‘** has been omitted.
We next expand ®, © and W as

¢ = Zl a,®,(&) 49)
0= Zl 5,0,(8) (50)
Y=Y o0 (s1)
where

D,(8) =(1-8)T,_, (%) (52)
0, =01-)T,_ () (53)
¥, (&) = <1+7—62>an(5)- (54)

(n—1)*+a

Here T,,(¢) is the Chebyshev polynomial of the nth order.
It should be noted here that ®,(¢), ©,(¢) and 'W,,(&) satisfy
the boundary conditions (48) automatically.

Substituting (49)—(51) into equations (34)—(36) and
requiring that equations (34)—(36) be satisfied at N col-
location points &, &,, ..., ¢y defined by

£, = cos (NLHO m=1.2,...N) (55)

we obtain 3N algebraic equations for 3N unknowns a,,

sy ... Ay, by, by, oo by, €y, Coy . ..., cy Of the form
EX = /FX (56)
where

X' =(ai,as,...,ay,b1,bs,...,by,c1 00,0, Cp) (57)

is the transpose of the column vector X. The coefficient

matrices E and F are of dimension 3N x 3N and their
explicit expressions are omitted.

For fixed values of P,, P, Q, a and R, the values of A
which ensure a non-trivial solution of equation (56) can
be obtained as the eigenvalues of the matrix F ~'E. From
3N eigenvalues A(1), 1(2), ..., A(3N), the one having the
largest real part (1(k), say), is selected. In order to obtain
the neutral stability curve, the value of R for which the
real part of A(k) vanishes must be sought. Let this value
of R be denoted by R". The lowest point of R" as a
function of a gives the critical Rayleigh number R, and
the critical wavenumber a.. The imaginary part of A(k)
corresponding to R, and a, gives the critical frequency w..
If w, = 0, the critical disturbance modes are stationary,
whereas if o, # 0, they are oscillatory. It is clear that the
stationary mode always exists. Therefore, R, = RS when
the oscillatory mode does not exist, whereas
R. = min(RS, R®) when the oscillatory mode exists,
where RS and R are the critical Rayleigh number for
the stationary and the oscillatory modes, respectively.
This procedure was repeated for various values of P,, P,
and Q.

The convergence of the Chebyshev collocation method
was tested by examining the variation of R., a. and w,
with N, the number of terms retained in the expansions
(49)—(51). Selected results are displayed in Table 1 for
several combinations of the governing parameters. The
convergence was faster in the stationary mode than in
the oscillatory mode. All of the values in this table were
obtained using double-precision arithmetic and con-
firmed using quadruple-precision arithmetic. Therefore,
all of the figures in this table are considered to be sig-
nificant.

4. Numerical results

The critical Rayleigh number R, is shown in Fig. 1 as
a function of the Chandrasekhar number Q for various
values of the Prandtl number P, and the magnetic Prandtl
number P,,. The dashed and solid curves represent RS
and R for the stationary and the oscillatory modes,
respectively.

The values of R?, which is independent of P, and P,,,
is also tabulated in Table 2 as a function of Q. As in
Table 1, all of the figures in this table are considered to
be significant. The value of N in this table indicates the
number of terms in the expansions (49)—(51) required
for RS to converge. We see from Tables 1 and 2 that the
convergence of the Chebyshev collocation method
becomes slower as Q increases. Numerical values of Table
2 are much more accurate than those in Table 2 of the
paper by Chandrasekhar [1].

It is seen from Fig. 1 that if Q is less than a certain
value, O*, which depends upon P, and P,,, instability sets
in a stationary mode and R, = RS. However, if Q exceeds
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Table 1

Selected results of convergence tests of the Chebyshev collocation method

N RS as o8 N R? al o8
0 =10 P.=1072P,=1,0=10
4 3719.878 4.0049 0 6 3127.454 2.8845 26.570
6 3754.655 4.0121 0 8 3136.311 2.8865 26.451
8 3757.119 4.0121 0 10 3136.825 2.8866 26.442
10 3757.227 4.0120 0 12 3136.843 2.8866 26.441
12 3757.230 4.0120 0 14 3136.844 2.8866 26.441
14 3757.230 4.0120 0 16 3136.844 2.8866 26.441
0=10* P=10"%P,=1,0=10*
10 124 310.8 8.6627 0 20 6362.173 3.9596 374.95
15 124430.2 8.6645 0 25 6835.191 3.9643 374.94
20 124501.4 8.6653 0 30 6387.303 3.9647 374.94
25 124 507.3 8.6654 0 35 6387.405 3.9647 374.94
30 124 507.6 8.6654 0 40 6387.410 3.9647 374.94
35 124 507.6 8.6654 0 45 6387.410 3.9647 374.94
0=10° P,=10"2%P,=1,0=10°
50 10320869 18.995 0 90 38741.48 7.4952 3482.0
60 10321324 18.995 0 100 38743.54 7.4953 3482.0
70 10321431 18.995 0 110 38743.82 7.4953 3482.0
80 10321449 18.995 0 120 38743.85 7.4953 3482.0
90 10321452 18.995 0 130 38743.86 7.4953 3482.0
100 10321452 18.995 0 140 38743.86 7.4953 3482.0

O, instability sets in as oscillatory mode, and R, = RY.
To avoid confusion, the segments of the curves for R?
which extend above the points of intersection with the
dashed curve for RS are not shown.

The magnitude (Q*) of Q at the point of transition
from stationary to oscillatory mode is plotted in Fig. 2
as a function of P,, for various values of P,. The curve
markers indicate the computed points. Each curve in
Fig. 2 defines the boundary between the stationary and
oscillatory domains. Points below each curve represent
parameter combinations (Q, P,)) for which R, = RS,
while points above each curve are those for which
R. = R?. Therefore, Fig. 2 gives a necessary and
sufficient condition for stationary convection or over-
stability to occur. Comparing the criteria obtained by
several investigators cited in Section 1 with our results
given by Fig. 2, we see that the criteria obtained by
Gibson [2] and Sherman and Ostrach [3] are correct
only when Q is sufficiently large, and those obtained by
Chandrasekhar [1], Gupta et al. [4] and Banerjee et al.
[5] are only sufficient conditions for stationary convection
to occur, whereas the criterion obtained by Kumar et al.
[6] is incorrect.

The process of transition from the stationary to oscil-
latory mode is illustrated in Fig. 3 for P, =0.01 and

P,, = 1. In this figure, the neutral curves for the stationary
and oscillatory modes are shown for values of Q near the
transition value Q*. At Q = 64, the lowest point of the
stationary (dashed) curve is lower than that of the oscil-
latory (solid) curve and, therefore, R, = RS. However, if
Q is increased to 65, the lowest point of the stationary
curve becomes higher than that of the oscillatory curve.
Thus, at Q = 65, R. = R®. As Q is further increased, the
stationary curve extends upward more rapidly than the
oscillatory curve.

Returning to the discussion of Fig. 1, it can be seen
that RS increases rapidly with increasing Q, and that after
transition to oscillatory mode, R? increases less rapidly
with increasing Q except for the case when P, is
sufficiently large. This means that, in general, the mag-
netic field has an inhibiting effect on the onset of insta-
bility both for the stationary and the oscillatory modes.
It is also seen from Fig. 1 that RO decreases with increas-
ing P, and increases with increasing P,.

The critical wavenumber «,. is shown in Fig. 4 as a
function of Q for various values of P, and P,,. The dashed
and solid curves represent a5 and a? for the stationary
and the oscillatory modes, respectively. The values of aS,
which is independent of P, and P,, is also tabulated in
Table 2 as a function of Q. The vertical lines in Fig.
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Fig. 1. Variation of the critical Rayleigh number R, with the Chandrasekhar number Q for various values of the Prandtl number P,
and the magnetic Prandtl number P,,.. - - -, stationary modes; —, oscillatory modes.
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Fig. 2. The magnitude (Q*) of the Chandrasekhar number Q at the point of transition from stationary to oscillatory mode as a function
of the magnetic Prandtl number P, for various values of the Prandtl number P,.
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Fig. 3. Neutral stability curves for various values of Q near the point of transition from stationary to oscillatory mode when P, = 0.01
and P, = 1. ---, stationary modes; —, oscillatory modes.
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Fig. 6. Side views of streamlines at the onset of instability for the case Q = 1000. (a) Stationary mode, (b) oscillatory mode (¢ = 0), (c)
oscillatory mode (1 = %T).
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Fig. 7. Side views of isotherms at the onset of instability for the case Q = 1000. (a) Stationary mode, (b) oscillatory mode (1 = 0), (c)
oscillatory mode (1 = iT).
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Fig. 8. Side views of magnetic lines of force at the onset of instability for the case Q = 1000. (a) Stationary mode, (b) oscillatory mode
(1 =0), (c) oscillatory mode (1 =} T).
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Table 2

Variation of the critical Rayleigh number RS and the critical
wavenumber a> for the onset of stationary convection with the
Chandrasekhar number Q

0 RS a N
0 1707.762 3.1163 10

1 1732.210 3.1326 10

2 1756.500 3.1485 10

5 1828.479 3.1944 10

10 1945.746 3.2653 10

20 2171.786 3.3903 10

50 2802.006 3.6792 15

100 3757.230 4.0120 15
200 5488.533 4.4458 15
500 10 109.766 5.1648 20
1000 17102.84 5.8140 20
2000 30124.76 6.5552 25
5000 66618.78 7.6854 30
10000 124507.6 8.6654 30
20000 236395.5 9.7654 35
50000 561671.4 11.4271 50
100 000 1091807.9 12.8618 60
200 000 2135956 14.470 60
500 000 5224694 16.898 70
1000 000 10321452 18.995 90

N is the number of terms in the expansions (49)—(51) for Rf and
as to converge.

4 represent the discontinuous changes in a. due to the
transition from stationary to oscillatory mode. We see
from Fig. 4 that both a° and a° are increasing functions
of Q, while the dependence of a? on P, and P, is
complicated.

Additional information regarding the nature of the
oscillatory instability can be obtained from Fig. 5, which
shows the variation of the critical frequency o, with Q
for various values of P, and P,. The vertical lines rep-
resent the discontinuous changes in @, due to the tran-
sition from stationary (w. = 0) to oscillatory (w. # 0)
mode. We see from Fig. 5 that w, is an increasing function
of Q, P, and P,,,.

It is finally concluded from Figs 1 and 2 that under
most terrestrial conditions (P, > P,,), instability sets in
as stationary convection. In fact, experiments by Nak-
agawa [8, 9] for a horizontal layer of mercury show no
evidence of overstability. Under astrophysical conditions

(P, < P,), however, overstability will be possible. It is
also concluded from Figs 1 and 4 that as P, becomes
sufficiently large, R and al become nearly independent
of Q, as far as Q < 10°. This means that under astro-
physical conditions (P, « P,), the magnetic field has
almost no effect on buoyancy driven instability except
for its frequency.

In closing this section, side views of streamlines, iso-
therms and magnetic lines of force at the onset of insta-
bility are shown in Figs 6, 7 and 8, respectively, for
the case Q = 1000. The other parameter values taken in
oscillatory modes are P, =1 and P, = 10. The region
shown is 0 < x < 27/a. and 0 < z < 1. In the captions of
these figures, T denotes the period of oscillation. We see
from Figs 6, 7 and 8 that when disturbances are station-
ary, streamlines, isotherms and magnetic lines of force
are symmetric with respect to a vertical centre plane of a
cell, whereas when disturbances are oscillatory, they are
not symmetric.
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